Sunday, 26 April 2015

“SOLAR SYSTEM - a synergistic view”

Thanks to the Science Organising Committee for selecting my abstract for Vietnam conference on “Solar system - a synergistic view” going to held between 16th – 25th July’ 2015.

Eagerly waiting for July’ 2015.

REQUESTING & STRUGGLING FOR TRAVEL GRANT.  I am an Individual Researcher from Jamshedpur, a small town of INDIA [developing country].

Saturday, 4 April 2015


I have already written on 20th March'2015 in an abstract submitted for Vietnam conference on " Planetary System : A Synergistic View" going to held in July'2015 in response to an abstract call from AAAS

"Jupiter, Saturn, Uranus & Neptune are not a planet; they are junior Sun (Jr. SUN). THEY CAME IN THE SYSTEM during speedy contraction of Sun, just after supernova blast.

Long before Mercury, Venus, Earth, and Mars formed, it seems that the inner solar system may have harbored a number of super-Earths—planets larger than Earth but smaller than Neptune. If so, those planets are long gone—broken up and fallen into the sun billions of years ago largely due to a great inward-and-then-outward journey that Jupiter made early in the solar system's history.
This possible scenario has been suggested by Konstantin Batygin, a Caltech planetary scientist, and Gregory Laughlin of UC Santa Cruz in a paper that appears the week of March 23 in the online edition of the Proceedings of the National Academy of Sciences (PNAS). The results of their calculations and simulations suggest the possibility of a new picture of the early solar system that would help to answer a number of outstanding questions about the current makeup of the solar system and of Earth itself. For example, the new work addresses why the terrestrial planets in our solar system have such relatively low masses compared to the planets orbiting other sun-like stars.
"Our work suggests that Jupiter's inward-outward migration could have destroyed a first generation of planets and set the stage for the formation of the mass-depleted terrestrial planets that our solar system has today," says Batygin, an assistant professor of planetary science. "All of this fits beautifully with other recent developments in understanding how the solar system evolved, while filling in some gaps."
Thanks to recent surveys of exoplanets—planets in solar systems other than our own—we know that about half of sun-like stars in our galactic neighborhood have orbiting planets. Yet those systems look nothing like our own. In our solar system, very little lies within Mercury's orbit; there is only a little debris—probably near-Earth asteroids that moved further inward—but certainly no planets. That is in sharp contrast with what astronomers see in most planetary systems. These systems typically have one or more planets that are substantially more massive than Earth orbiting closer to their suns than Mercury does, but very few objects at distances beyond.
"Indeed, it appears that the solar system today is not the common representative of the galactic planetary census. Instead we are something of an outlier," says Batygin. "But there is no reason to think that the dominant mode of planet formation throughout the galaxy should not have occurred here. It is more likely that subsequent changes have altered its original makeup."
According to Batygin and Laughlin, Jupiter is critical to understanding how the solar system came to be the way it is today. Their model incorporates something known as the Grand Tack scenario, which was first posed in 2001 by a group at Queen Mary University of London and subsequently revisited in 2011 by a team at the Nice Observatory. That scenario says that during the first few million years of the solar system's lifetime, when planetary bodies were still embedded in a disk of gas and dust around a relatively young sun, Jupiter became so massive and gravitationally influential that it was able to clear a gap in the disk. And as the sun pulled the disk's gas in toward itself, Jupiter also began drifting inward, as though carried on a giant conveyor belt.
"Jupiter would have continued on that belt, eventually being dumped onto the sun if not for Saturn," explains Batygin. Saturn formed after Jupiter but got pulled toward the sun at a faster rate, allowing it to catch up. Once the two massive planets got close enough, they locked into a special kind of relationship called an orbital resonance, where their orbital periods were rational—that is, expressible as a ratio of whole numbers. In a 2:1 orbital resonance, for example, Saturn would complete two orbits around the sun in the same amount of time that it took Jupiter to make a single orbit. In such a relationship, the two bodies would begin to exert a gravitational influence on one another.
"That resonance allowed the two planets to open up a mutual gap in the disk, and they started playing this game where they traded angular momentum and energy with one another, almost to a beat," says Batygin. Eventually, that back and forth would have caused all of the gas between the two worlds to be pushed out, a situation that would have reversed the planets' migration direction and sent them back outward in the solar system. (Hence, the "tack" part of the Grand Tack scenario: the planets migrate inward and then change course dramatically, something like a boat tacking around a buoy.)
In an earlier model developed by Bradley Hansen at UCLA, the terrestrial planets conveniently end up in their current orbits with their current masses under a particular set of circumstances—one in which all of the inner solar system's planetary building blocks, or planetesimals, happen to populate a narrow ring stretching from 0.7 to 1 astronomical unit (1 astronomical unit is the average distance from the sun to Earth), 10 million years after the sun's formation. According to the Grand Tack scenario, the outer edge of that ring would have been delineated by Jupiter as it moved toward the sun on its conveyor belt and cleared a gap in the disk all the way to Earth's current orbit.
But what about the inner edge? Why should the planetesimals be limited to the ring on the inside? "That point had not been addressed," says Batygin.
He says the answer could lie in primordial super-Earths. The empty hole of the inner solar system corresponds almost exactly to the orbital neighborhood where super-Earths are typically found around other stars. It is therefore reasonable to speculate that this region was cleared out in the primordial solar system by a group of first-generation planets that did not survive.
Batygin and Laughlin's calculations and simulations show that as Jupiter moved inward, it pulled all the planetesimals it encountered along the way into orbital resonances and carried them toward the sun. But as those planetesimals got closer to the sun, their orbits also became elliptical. "You cannot reduce the size of your orbit without paying a price, and that turns out to be increased ellipticity," explains Batygin. Those new, more elongated orbits caused the planetesimals, mostly on the order of 100 kilometers in radius, to sweep through previously unpenetrated regions of the disk, setting off a cascade of collisions among the debris. In fact, Batygin's calculations show that during this period, every planetesimal would have collided with another object at least once every 200 years, violently breaking them apart and sending them decaying into the sun at an increased rate.
The researchers did one final simulation to see what would happen to a population of super-Earths in the inner solar system if they were around when this cascade of collisions started. They ran the simulation on a well-known extrasolar system known as Kepler-11, which features six super-Earths with a combined mass 40 times that of Earth, orbiting a sun-like star. The result? The model predicts that the super-Earths would be shepherded into the sun by a decaying avalanche of planetesimals over a period of 20,000 years.
"It's a very effective physical process," says Batygin. "You only need a few Earth masses worth of material to drive tens of Earth masses worth of planets into the sun."
Batygin notes that when Jupiter tacked around, some fraction of the planetesimals it was carrying with it would have calmed back down into circular orbits. Only about 10 percent of the material Jupiter swept up would need to be left behind to account for the mass that now makes up Mercury, Venus, Earth, and Mars.
From that point, it would take millions of years for those planetesimals to clump together and eventually form the terrestrial planets—a scenario that fits nicely with measurements that suggest that Earth formed 100-200 million years after the birth of the sun. Since the primordial disk of hydrogen and helium gas would have been long gone by that time, this could also explain why Earth lacks a hydrogen atmosphere. "We formed from this volatile-depleted debris," says Batygin.
And that sets us apart in another way from the majority of exoplanets. Batygin expects that most exoplanets—which are mostly super-Earths—have substantial hydrogen atmospheres, because they formed at a point in the evolution of their planetary disk when the gas would have still been abundant. "Ultimately, what this means is that planets truly like Earth are intrinsically not very common," he says.
The paper also suggests that the formation of gas giant planets such as Jupiter and Saturn—a process that planetary scientists believe is relatively rare—plays a major role in determining whether a planetary system winds up looking something like our own or like the more typical systems with close-in super-Earths. As planet hunters identify additional systems that harbor gas giants, Batygin and Laughlin will have more data against which they can check their hypothesis—to see just how often other migrating giant planets set off collisional cascades in their planetary systems, sending primordial super-Earths into their host stars.

The researchers describe their work in a paper titled "Jupiter's Decisive Role in the Inner Solar System's Early Evolution.“

Friday, 3 April 2015

Black holes don't erase information, scientists say - 22 hours ago by Charlotte Hsu

Please refer my 2nd OPINION written on 24th, Jan’2015 under heading “Theory of Everything – on the basis of Dark atom & Dark energy”. In which I had clearly written:

12. “in black hole information are lost”

2ND OPINION: in fact there is no information loss in sense matter & energy goes in matter & energy comes out. One side matters are destructed on other side matters are created [can be explained by the inner structure of galactic core & formation]. 

The "information loss paradox" in black holes—a problem that has plagued physics for nearly 40 years—may not exist.
Shred a document, and you can piece it back together. Burn a book, and you could theoretically do the same. But send information into a black hole, and it's lost forever.
That's what some physicists have argued for years: That black holes are the ultimate vaults, entities that suck in information and then evaporate without leaving behind any clues as to what they once contained.
But new research shows that this perspective may not be correct.
"According to our work, information isn't lost once it enters a black hole," says Dejan Stojkovic, PhD, associate professor of physics at the University at Buffalo. "It doesn't just disappear."
Stojkovic's new study, "Radiation from a Collapsing Object is Manifestly Unitary," appeared on March 17 in Physical Review Letters, with UB PhD student Anshul Saini as co-author.
The paper outlines how interactions between particles emitted by a black hole can reveal information about what lies within, such as characteristics of the object that formed the black hole to begin with, and characteristics of the matter and energy drawn inside.
This is an important discovery, Stojkovic says, because even physicists who believed information was not lost in black holes have struggled to show, mathematically, how this happens. His new paper presents explicit calculations demonstrating how information is preserved, he says.
The research marks a significant step toward solving the "information loss paradox," a problem that has plagued physics for almost 40 years, since Stephen Hawking first proposed that black holes could radiate energy and evaporate over time. This posed a huge problem for the field of physics because it meant that information inside a black hole could be permanently lost when the black hole disappeared—a violation of quantum mechanics, which states that information must be conserved.
Information hidden in particle interactions
In the 1970s, Hawking proposed that black holes were capable of radiating particles, and that the energy lost through this process would cause the black holes to shrink and eventually disappear. Hawking further concluded that the particles emitted by a black hole would provide no clues about what lay inside, meaning that any information held within a black hole would be completely lost once the entity evaporated.
Though Hawking later said he was wrong and that information could escape from black holes, the subject of whether and how it's possible to recover information from a black hole has remained a topic of debate.
Stojkovic and Saini's new paper helps to clarify the story.
Instead of looking only at the particles a black hole emits, the study also takes into account the subtle interactions between the particles. By doing so, the research finds that it is possible for an observer standing outside of a black hole to recover information about what lies within.
Interactions between particles can range from gravitational attraction to the exchange of mediators like photons between particles. Such "correlations" have long been known to exist, but many scientists discounted them as unimportant in the past.
"These correlations were often ignored in related calculations since they were thought to be small and not capable of making a significant difference," Stojkovic says. "Our explicit calculations show that though the correlations start off very small, they grow in time and become large enough to change the outcome."
 Explore further: The entropy of black holes
More information: Physical Review

Wednesday, 1 April 2015

CERN researchers confirm existence of the Force - Posted by Cian O'Luanaigh on 1 Apr 2015. Last updated 1 Apr 2015, 17.42

Fifth force is not new for me, I have been writing about it since 2013

On 17th, Aug.’2013. I sent a manuscript in the journal “General Relativity and Gravitation” under heading 
"GRAVITY"- a PUSHING FORCE [-a "Layman concept of Unified Dark Energy"], it completely define the role of 5th force in gravitation [I have a pdf file sent by the journal on my submission].

The role of Dark energy is confirmed by ESA in March’2015 [pl. refer my comment in]

On 20th, March’ 2015, I have sent abstract for Vietnam conference in July on “Planetary Systems: A Synergistic View” after receiving mail from AAAS. This time again I have written the role of 5th force.

Apart from it my concept of “Dark Matter” got strength when NASA is saying which I have been saying since 2013.

My “out of box thinking” & the present Science comes on the same conclusion in many topics. In most of the time I have said first.

My 2nd OPINION on many topics where science feels uncomfortable are very important

My all comments in my blog & different in different international magazine, blogs, periodicals are the reflection of my “theory of everything – on the basis of Dark Atom & Dark Energy”

Researchers at the Large Hadron Collider just recently started testing the accelerator for running at the higher energy of 13 TeV, and already they have found new insights into the fundamental structure of the universe. Though four fundamental forces  – the strong force, the weak force, the electromagnetic force and gravity – have been well documented and confirmed in experiments over the years, CERN announced today the first unequivocal evidence for the Force. “Very impressive, this result is,” said a diminutive green spokesperson for the laboratory.
“The Force is what gives a particle physicist his powers,” said CERN theorist Ben Kenobi of the University of Mos Eisley, Tatooine. “It’s an energy field created by all living things. It surrounds us; and penetrates us; it binds the galaxy together.”
Though researchers are as yet unsure what exactly causes the Force, students and professors at the laboratory have already started to harness its power. Practical applications so far include long-distance communication, influencing minds, and lifting heavy things out of swamps.
Kenobi says he first started teaching the ways of the Force to a young lady who was having trouble revising for her particle-physics exams. "She said that I was her only hope," says Kenobi. "So I just kinda took it from there. I designed an experiment to detect the Force, and passed on my knowledge."
Kenobi's seminal paper "May the Force be with EU" – a strong argument that his experiment should be built in Europe – persuaded the CERN Council to finance the installation of dozens of new R2 units for the CERN data centre*. These plucky little droids are helping physicists to cope with the flood of data from the laboratory's latest experiment, the Thermodynamic Injection Energy (TIE) detector, recently installed at the LHC.
"We're very pleased with this new addition to CERN's accelerator complex," said data analyst Luke Daniels of human-cyborg relations. "The TIE detector has provided us with plenty of action, and what's more it makes a really cool sound when the beams shoot out of it."
But the research community is divided over the discovery. Dark-matter researcher Dave Vader was unimpressed, breathing heavily in disgust throughout the press conference announcing the results, and dismissing the cosmological implications of the Force with the quip "Asteroids do not concern me".
Rumours are growing that this rogue researcher hopes to delve into the Dark Side of the Standard Model, and could even build his own research station some day. With the academic community split, many are tempted by Vader's invitations to study the Dark Side, especially researchers working with red lasers, and anyone really with an evil streak who looks good in dark robes.
"We hope to continue to study the Force, and perhaps use it to open doors with our minds and fly around and stuff," said TIE experimentalist Fan Buoi. "Right now, to be honest, I don't really care how it works. The theory department have some crackpot idea about life forms called midi-chlorians, but frankly I think that poorly thought out explanations like that just detract from how cool the Force really is."
With the research ongoing, many at CERN are already predicting that the Force will awaken later this year.

NASA’s Hubble, Chandra Find Clues that May Help Identify Dark Matter - March 26, 2015, RELEASE 15-046

“Using observations from NASA’s Hubble Space Telescope and Chandra X-ray Observatory, astronomers have found that dark matter does not slow down when colliding with itself, meaning it interacts with itself less than previously thought.”


MY OPINION ON 24TH,JAN’2015 under heading “Theory of Everything – on the basis of Dark Atom & Dark Energy” in

dark atom rarely collide at present terrestrial condition, because condition is now quite stable. It can be searched by creating unstable condition here or by doing experiment in unstable condition present elsewhere in universe or waiting for another disaster here.

SHREEKANT says: in

The location[condition] where we are searching ‘THE HIGH IMPACT OF DM’ IS CORRECT? Our atmosphere is now almost STABLE.

MY COMMENTS ON 22nd, Sept.’2014 in

- Collision of Dark matter will not give anything at normal condition. Normally they are readjusting itself.

- yes it includes leftover from the violent collision between dark matter & ….. , BUT CERTAINLY NOT BETWEEN THE PARTICLES OF DARK MATTER

“Dark matter is an invisible matter that makes up most of the mass of the universe. Because dark matter does not reflect, absorb or emit light, it can only be traced indirectly by, such as by measuring how it warps space through gravitational lensing, during which the light from a distant source is magnified and distorted by the gravity of dark matter.”

MY COMMENTS ON 22nd, Sept.’2014 in

- emitting or reflecting light is not only the way for making the things visible. We have to use special characteristics of dark matter & dark energy to hunt them. Present experiment is not upto mark.

“This means dark matter does not interact with visible particles and flies by other dark matter with much less interaction than previously thought. Had the dark matter dragged against other dark matter, the distribution of galaxies would have shifted.”

MY COMMENT on  20th , Oct.’ 2013 in

The dark matter interact white matter very weakly but continuously. It is not static it can move very fast depending on ….. It formed regularly at…. It play a very important role in all the phenomenon of our surrounding too.

MY COMMENT on  02nd , April’ 2014

Dark matter is not only distributed over all the places of the universe [including our surrounding] but also interacting with white matter continuously. Only sizes differ.


Using observations from NASA’s Hubble Space Telescope and Chandra X-ray Observatory, astronomers have found that dark matter does not slow down when colliding with itself, meaning it interacts with itself less than previously thought. Researchers say this finding narrows down the options for what this mysterious substance might be.
Dark matter is an invisible matter that makes up most of the mass of the universe. Because dark matter does not reflect, absorb or emit light, it can only be traced indirectly by, such as by measuring how it warps space through gravitational lensing, during which the light from a distant source is magnified and distorted by the gravity of dark matter.
To learn more about dark matter and test such theories, researchers study it in a way similar to experiments on visible matter -- by watching what happens when it bumps into other objects. In this case, the colliding objects under observation are galaxy clusters.
Researchers used Hubble and Chandra to observe these space collisions. Specifically, Hubble was used to map the distribution of stars and dark matter after a collision, which was traced through its gravitational lensing effect on background light. Chandra was used to detect the X-ray emission from colliding gas clouds. The results are published in the March 27 edition of the journal Science.
“Dark matter is an enigma we have long sought to unravel,” said John Grunsfeld, assistant administrator of NASA’s Science Mission Directorate in Washington. “With the combined capabilities of these great observatories, both in extended mission, we are ever closer to understanding this cosmic phenomenon.”
Galaxy clusters are made of three main ingredients: galaxies, gas clouds, and dark matter. During collisions, the gas clouds surrounding galaxies crash into each other and slow down or stop. The galaxies are much less affected by the drag from the gas and, because of the huge gaps between the stars within them, do not slow each other down.
"We know how gas and stars react to these cosmic crashes and where they emerge from the wreckage. Comparing how dark matter behaves can help us to narrow down what it actually is," said the study’s lead author David Harvey of the École Polytechnique Fédérale de Lausanne (EPFL) in Switzerland.
Harvey and his team studied 72 large cluster collisions. The collisions happened at different times and were viewed from different angles -- some from the side, and others head-on.
The team found that, like the galaxies, the dark matter continued straight through the violent collisions without slowing down much. This means dark matter does not interact with visible particles and flies by other dark matter with much less interaction than previously thought. Had the dark matter dragged against other dark matter, the distribution of galaxies would have shifted. 
"A previous study had seen similar behavior in the Bullet Cluster," said team member Richard Massey of Durham University in the United Kingdom. "But it's difficult to interpret what you're seeing if you have just one example. Each collision takes hundreds of millions of years, so in a human lifetime we only get to see one freeze-frame from a single camera angle. Now that we have studied so many more collisions, we can start to piece together the full movie and better understand what is going on."
With this discovery, the team has successfully narrowed down the properties of dark matter. Particle physics theorists now have a smaller set of unknowns to work around when building their models.
“It is unclear how much we expect dark matter to interact with itself because dark matter already is going against everything we know,” said Harvey. “We know from previous observations that it must interact with itself reasonably weakly.”
Dark matter may have rich and complex properties, and there are still several other types of interactions to study. These latest results rule out interactions that create a strong frictional force, causing dark matter to slow down during collisions.
The team also will study other possible interactions, such as dark matter particles bouncing off each other like billiard balls and causing dark matter particles to be ejected from the clouds by collisions or for dark matter blobs to change shape. The team also is looking to study collisions involving individual galaxies, which are much more common.
"There are still several viable candidates for dark matter, so the game is not over. But we are getting nearer to an answer," said Harvey. "These astronomically large particle colliders are finally letting us glimpse the dark world all around us, but just out of reach."
The Hubble Space Telescope is a project of international cooperation between NASA and ESA (European Space Agency). NASA's Goddard Space Flight Center in Greenbelt, Maryland, manages the telescope. The Space Telescope Science Institute (STScI) in Baltimore conducts Hubble science operations. STScI is operated for NASA by the Association of Universities for Research in Astronomy, Inc., in Washington.
NASA’s Marshall Space Flight Center in Huntsville, Alabama, manages the Chandra program for NASA's Science Mission Directorate in Washington. The Smithsonian Astrophysical Observatory in Cambridge, Massachusetts, controls Chandra's science and flight operations.